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Franc Vrečer b,c
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Abstract

A quality-by-design (QbD) principle, including process analytical technology, is be-
coming the principal idea in drug development and manufacturing. The implementa-
tion of QbD into product development and manufacturing requires larger resources,
both human and financial, however, large-scale production can be established in
a more cost-effective manner and with improved product quality. The objective of
the present work was to study the influence of particle size distribution in pow-
der mixture for tableting, and the settings of the compression parameters on the
tablet quality described by the capping coefficient, standard deviations of mass and
crushing strength of compressed tablets. Fuzzy models were used for modelling of
the effects of the particle size distribution and the tableting machine settings on
the tablet quality. The results showed that the application of mathematical models,
based on the contemporary routinely-measured quantities, can significantly improve
the trial-and-error procedures.
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1 Introduction

The advantages of adopting the quality-by-design (QbD) principle together
with process analytical technology (PAT) in drug development and manu-
facturing are being recognised by the pharmaceutical industry (Frake et al.,
1997; Informa, 2007). The implementation of QbD and PAT may be more
expensive during product development, however, large-scale production can
be established in a more cost-effective manner and with improved product
quality. The main advantage of PAT is its flexibility and the ability to adapt
to new situations in the process in a short time, since the system can detect
production deviations and react by adjusting the process parameters before
the deviations can affect the product quality.
Tablets are produced by compressing a powder mixture containing the active
ingredient and auxiliary materials into a solid form. The tablet quality can
be described by several parameters such as: accurate tablet mass, minimal
variations in hardness, capping coefficient, and several others. Capping can
occur if the intensity of the elastic relaxation overcomes the strength of the
inter-particulate bonding formed during compression, leading to separation of
the upper part of the tablet from the tablet body (Picker, 2001).
Many studies on the influence of the powder’s mechanical characteristics on the
cohesion, the deformation mechanisms, and the elastic recovery of the tablet
have been performed in the past (Informa, 2007; Sebhatu et al., 1997; Rios,
2006; Sorensen et al., 2006; Zhang et al., 2003; Gohel and Jogani, 2002; Sucker,
1982; Li et al., 2004; Parrott, 1990; Nyström et al., 1993; Luangtana-Anan and
Fell, 1990; Sonnergaard, 2006). Real multicomponent mixtures of ingredients
were rarely evaluated in the published studies and practical experiences show
that applying models, developed in laboratory-scale studies, i.e.,(Wu et al.,
2005; Ilkka and Paronen, 1993; Carstensen, 1996; Busignies et al., 2006) for
large-scale production situations often give unsatisfactory results due to the
complexity of mixture properties and industrial equipment. The mechanical
properties of powder mixtures with a large number of components are too
complex to be described in a transparent theoretical mathematical model.
The mathematical models developed in several studies (Sebhatu et al., 1997;
Rios, 2006; Sorensen et al., 2006; Zhang et al., 2003; Gohel and Jogani, 2002;
Sucker, 1982; Li et al., 2004; Parrott, 1990; Nyström et al., 1993; Luangtana-
Anan and Fell, 1990; Sonnergaard, 2006) are often not precise enough for the
purpose of adjusting the parameters of a tableting machine to inter-batch dif-
ferences.
The objective of the present work was to study the influence of particle size
and the process parameters on the tablet quality, described by capping ten-
dency and standard deviations of mass and crushing strength. Indirectly, the
influence of dry granulation process on the quality of the tablets was stud-
ied through its influence on particle size distribution. We investigated the use
of fuzzy models for the prediction of tablet quality from the routinely mea-

2



sured mechanical properties of the powder mixture and the tableting machine’s
settings. For the model development we used data of tablets produced from
powders with different mechanical properties but with the same composition.
In our previous research publication (Belič et al., 2009) the prediction of the
capping coefficient was studied, while the whole combination of factors, con-
tributing to the tablet quality, was studied in the present work. Model tablets
were produced using several different settings of the tableting machine. We
also evaluated the efficiency of the fuzzy model for the optimisation of the
tableting parameters for the known properties of a powder batch as a basis
for controlling the process in the PAT system (Informa, 2007).

2 Materials and Methods

The method for optimising the tableting process using fuzzy models was de-
veloped and tested on a high-capacity Killian T300/40 rotary press with for-
mulation containing high amount of active ingredient which exhibits poor
flow and compressibility characteristics and intensive capping tendency. A dry
granulation of this formulation led to a larger particle size, improved powder
flowability, better compressibility properties and a significantly lower capping
tendency (Zupančič-Božič et al., 2008). Optimisation of tableting setting pa-
rameters such as main compression force, pre-compression force and tableting
speed can additionally contribute to the quality of the tablets. The data was
organised in a matrix where each column represented one measured quantity
and each row represented one tablet type. The following quantities were mea-
sured for all tablet types: powder distribution over eight particle size ranges
(d1 - d8), main compression force (F ), pre-compression force (f), tableting
speed (v), standard deviation of crushing strength (σF ), standard deviation of
mass (σm), and capping coefficient (CC). For the model’s evaluation a quality-
correlation coefficient R2 was used:

R2 = 1 − SSEM

SSET
(1)

where SSEM is the sum of the squared error between the model prediction
and the target, and SSET is the sum of SSEM and the average of the target
values. The model reliability was estimated as the maximal difference of the
calculated and the measured value for each quality factor (σF , σm, or CC).
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2.1 Production of Model Tablets

In order to study the influence of the particle size distribution of powder
mixtures on tablet quality, three types of powder mixtures for tableting were
prepared:

a) powder mixture for direct tableting (Type: Direct - 1 sample),
b) powder mixture prepared by slugging (dry granulation on a rotary tablet

press), using different setting parameters of tableting speed and compres-
sion pressure (Type: Slugging - 4 samples - see Table 1),

c) powder mixture prepared by dry granulation on a roller compactor using
different parameters of compacting speed and pressure (Type: Roller -
4 samples - see Table 1).

[Table 1 about here.]

The qualitative and quantitative compositions of all the powder mixtures
were the same: active ingredient (M-112, provided by KRKA, d.d., Novo
mesto), 75% (w/w), microcrystalline cellulose (MCC, Avicel PH 101, FMC,
Germany), 15% (w/w), cation exchange resin - Amberlite IRP88 (Rohm and
Haas, France), 5% (w/w), talc (Luzenac val Chisone SPA, Italy), 4% (w/w),
magnesium stearate (Faci SPA, Italy), 1% (w/w). Drug, MCC and half of the
quantities of talc and magnesium stearate were used intragranulary. The rest
of talc and magnesium stearate and the whole quantity of Amberlite were
admixed extragranulary to the milled and sieved dry granulate. Milling and
sieving of the compacts were performed on the Quadro-Comil U20 machine
(Quadro, Canada) using a 1.5-mm sieve. Each powder type was characterised
with a particle size distribution based on a sieve analysis (Alpine 200LS-N,
Hosokawa, Germany) using the following sieve ranges: 0-0.045mm (d1), 0.045-
0.071mm (d2), 0.071-0.125mm (d3), 0.125-0.25mm (d4), 0.25-0.5mm (d5), 0.5-
0.71mm (d6), 0.71-1.0mm (d7), and 1.0-1.25mm (d8). Each powder type was
characterised by the proportion of particles belonging to each particle size
group (wi). All powder mixtures were compressed into tablets on a Killian
T300/40 (IMA, Germany) rotary tablet press equipped with round, concave
punches (Φ=13 mm, R=26 mm) using different combinations of parameters
settings: the main compression force, the pre-compression force and the tablet-
ing speed (Table 2). The tablet mass was 0.550 g. Due to the high weight
fraction of M-112 in the tablet formulation, the particle size distribution of
mixture Direct closely resembles the particle distribution of the plain drug
(M-112). Approximately 85% of the particles in Direct are < 0.071 mm, the
compactibilitiy slope is 1.63 · 10−2 ± 9.60 · 10−4, and the crushing strength of
tablets made of pure M112 is 98.37 N ± 5.09 N. Detailed analysis of physical
properties was published recently in (Zupančič-Božič et al., 2008).
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[Table 2 about here.]

Nine powder mixtures (Direct - 1 sample, Slugging - 4 samples and Roller -
4 samples) were compressed at different combinations of parameters settings
during the tableting (process parameter combinations 1.-8.). Mixture Direct
was compressed also using process parameter combinations 9. - 12. We pro-
duced 76 types of tablets, and a sample of 10 tablets was evaluated from each
tablet type.
The tablet types were evaluated in terms of a capping coefficient (CC) dur-
ing the tablet crushing strength testing, and standard deviations of crushing
strength (σF ) and mass (σm). The tablet was considered to have a capping
tendency if the upper part of the tablet completely fell apart from the tablet
body during crushing strength testing or if typical relief (a significant step
form) appeared on the fractured surface of the tablet, which would indicate
that there is a large probability that the tablet would break later during the
subsequent steps in production (Zupančič-Božič et al., 2008). The CC was
calculated as a fraction of the tablets with a capping tendency compared to
the whole tested number of tablets.
The quality description factors of each tablet type were analysed in accor-
dance to the following experimental values: compression parameters settings
(the main compression force (F ), the pre-compression force (f), the tablet-
ing speed (v)) and powder mixture parameter the median of the particle size
distribution (mp) of the powder. The median of the particle size distribution
represents a statistically calculated descriptor of powder type based on particle
size distribution of the powders involved in the study.

2.2 Principal component analysis

The dimensionality of the problem, can be identified using principal compo-
nent analysis (PCA) (Jackson, 1991). PCA calculates linear combinations of
regressors, called the principal components, in such a way that the compo-
nents are linearly independent. The variance of each component indicates its
importance. The covariance matrix is calculated from the measured data. Let
X denote the matrix of the measurements where each column represents one
measured quantity and each row represents one time slice of all the measure-
ments. Thus, the covariance matrix C is calculated as

C = XT X (2)

where the diagonal values represent the variances of the measurements (the
regressors). The singular values (σ) of the matrix X are equal to the eigen-
values of the covariance matrix C and the corresponding eigenvectors of the
matrix C form the transformation matrix T , each eigenvector representing
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one column, such that the principal components P are calculated as

P = XT (3)

An analysis of each component singular value reveals which components can
be neglected without any significant loss of information; generally, it is possible
to omit the components whose sum of singular values share in the sum of all
singular values is smaller than or equal to the share of measurement-noise in
the measurements.

2.3 Fuzzy model

Fuzzy models are often used for modelling of non-linear relations (Oblak and
Škrjanc, 2006; Oblak et al., 2007; Blažič and Škrjanc, 2007; Logar et al., 2008;
Belič et al., 2003); however, their use in pharmacy remains limited. In the
present study a Takagi-Sugeno-type fuzzy model was used (Sugeno and Takagi,
1983). The model consists of if-then logical statements that represent the
partial relations between the input and the output variables of the model. A
logical statement consists of a premise or an if-part that defines a region of
input space, and of consequence that is, in Takagi-Sugeno type, an arbitrary
function of the input variables (yi). For simplicity of interpretation, however,
the output functions are normally linear functions of the input variables. Thus,
the Takagi-Sugeno model of a system with 2 inputs x1 and x2, where each
input is divided between two fuzzy sets, x1 ∈ X11, X12 and x2 ∈ X21, X22, and
with outputs yi that are linear functions of input variables with coefficients
kij would look like:

IF(x1 ∈ X11) ∩ (x2 ∈ X21)THEN(y1 = k11x1 + k12x2 + n1) (4)

IF(x1 ∈ X11) ∩ (x2 ∈ X22)THEN(y2 = k21x1 + k22x2 + n2)

IF(x1 ∈ X12) ∩ (x2 ∈ X21)THEN(y3 = k31x1 + k32x2 + n3)

IF(x1 ∈ X12) ∩ (x2 ∈ X22)THEN(y4 = k41x1 + k42x2 + n4)

Each logical statement defines a region of input space and the corresponding
output function. Each input variable is first fuzzified, by calculating the mem-
berships of the fuzzy sets that describe the particular input variable. Next,
the output of each statement is calculated, and then the outputs are aggre-
gated by calculating the weighted sum of the outputs, the weights being the
corresponding results of the premises.

y =
μ1y1 + μ2y2 + μ3y3 + μ4y4

μ1 + μ2 + μ3 + μ4

(5)
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Where μi represents the result of a premise statement.

μ1 = (x1 ∈ X11) ∩ (x2 ∈ X21) = min(x1 ∈ X11, x2 ∈ X21) (6)

μ2 = (x1 ∈ X11) ∩ (x2 ∈ X22) = min(x1 ∈ X11, x2 ∈ X22)

μ3 = (x1 ∈ X12) ∩ (x2 ∈ X21) = min(x1 ∈ X12, x2 ∈ X21)

μ4 = (x1 ∈ X12) ∩ (x2 ∈ X22) = min(x1 ∈ X12, x2 ∈ X22)

2.4 Optimisation

To find the optimal setting for the tableting machine with respect to the pow-
ders’ mechanical properties, the inputs to the model, representing the powders’
properties, must be fixed to the values of the current batch, while the tableting
machine’s settings can be freely changed within the limits of the machine and
the tableting process. As the model represents the effects of the powder char-
acteristics and the tableting machine’s settings on the tablet quality factors,
it is possible to find the tableting machine settings that result in the minimal
values of CC, σF , and σm. The training and simulation of the models as well
as the optimisation of the settings were performed in MATLAB (The Math-
Works, Natick, MA, USA) (Mathworks, 1998). To find the optimal setting
with respect to the tablet quality, a simplex optimisation method (Fletcher,
1969) that was implemented in MATLAB’s fminsearch function was used. The
tablet quality was described with the following criterion function (J)

J = CC +
σF

40
+

σm

0.04
+

10000

v
. (7)

In the criterion function, tableting speed was included, in order to to take
the tableting efficiency into account as well. The constants of the criterion
function were set to values that cause balanced influence of all the quality
measures on the criterion by scaling all the variables on the interval [0,1].

3 Results

3.1 Identification of the data’s dimensionality

Using a PCA on all the input data (all the data without CC, σF , and σm)
showed that there are two significant components in the data. Since the mea-
surement noise could not have been estimated, the significance of principal
components was set to 95% of the sum of all singular values of the measure-
ments. The sum of singular values of the first two principal components was
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already larger than 95% of the sum of all singular values, which means that all
the input data could be reduced to two principal components with only 5% loss
of information in the measured data, indicating that the dimensionality of the
problem is most likely 2. However, it must be stated that the PCA can be used
for the identification of linearly independent variables, and if the relationship
between the variables is non-linear, this can result in an underestimation of
the dimensionality. In the first step we used the two most important principal
components as an input to the model. The model described the measured data
well (R2 above 0.8), however, it was not possible to uniquely calculate process
variables back from the principal components. Hence, the choice of principal
components as the model inputs is not suitable for the process optimisation
purposes. Therefore, a different approach for reducing the input data space
had to be chosen. First, we condensed the particle size distribution data by
calculating the median of the particle size distribution of the powders. The
median mp was calculated as

mp =

8∑

i=1
diwimi

8∑

i=1
widi

. (8)

In equation (8) di represents the particle size range, wi is the portion of the
particles within the particle size range, and mi is the median of the particle size
range. The median of the particle size distribution of powders from Slugging
group are between 0.0657 mm – 0.0541 mm, in Roller group the values of mp

are between 0.0632 mm – 0.0557 mm, while the value for the Direct powder
type is much lower: 0.0028 mm. The distribution of particle sizes is presented
in Figure 1).

[Figure 1 about here.]

Next, we checked what combination of the measured quantities would repre-
sent a suitable input for the model. For each quality factor a separate model
was designed. The parameters of each model were first identified with all pos-
sible inputs: the median of the particle size distribution of the powder (mp),
the main compression force (F ), the pre-compression force (f), and the tablet-
ing speed (v). In the next step, one of the inputs was removed and the model
parameters were identified again. The removed parameter that caused the
smallest drop or highest elevation of the R2 value was permanently removed
as a suitable input to the model. The elimination proces was continued until,
any further removal of the inputs caused a significant drop of the R2 value.
The following inputs were identified. The model for the CC prediction needs:
the median of the particle size distribution of the powder (mp), and the main
compression force (F ). The model for the σF needs the median of the particle
size distribution of the powder (mp), the main compression force (F ), and
pre-compression force (f) as inputs. While the model for the σm needs the
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median of the particle size distribution of the powder (mp), the main com-
pression force (F ), the pre-compression force (f), and the tableting speed (v)
as inputs.

3.2 Model prediction

For validation purposes a variant of the leave-one-out procedure was used;
however, for the final results, all the available data were used for the iden-
tification. Initially, each input to the model was described with two fuzzy
sets and their trapezoidal membership functions were identified in the model
identification process.

3.2.1 Fuzzy model of CC

The identified model for CC described the input-output relation with two
fuzzy sets for each linguistic variable on the input, resulting in four logical
statements. The linguistic variable, median of the particle size distribution
was described by two sets that were named, fine and coarse, while the main
compression force was described with the sets that were named high and low.
The naming of the sets was chosen according to the interpretation of the
identified membership functions. The membership functions for the fuzzy sets
were identified with the MATLAB’s function anfis, and are presented in Figure
2.

[Figure 2 about here.]

The logical statements describing the model are as follows:

IF(mp ∈ fine) ∩ (F ∈ low)THEN(CC1 = −0.001mp + 0.042F − 0.296) (9)

IF(mp ∈ fine) ∩ (F ∈ high)THEN(CC2 = −0.011mp − 0.225F − 3.75)

IF(mp ∈ coarse) ∩ (F ∈ low)THEN(CC3 = −0.067mp + 0.003F )

IF(mp ∈ coarse) ∩ (F ∈ high)THEN(CC4 = −11.81mp − 0.031F + 1.4796)

while the output of the fuzzy model is:

CC =
μ1CC1 + μ2CC2 + μ3CC3 + μ4CC4

μ1 + μ2 + μ3 + μ4
(10)

where μi is a value of the fuzzy intersection for the premise of each statement.
The resulting relation for the CC identified with the fuzzy model is presented
in Figure 3.

[Figure 3 about here.]
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The quality of the fuzzy identification process was assessed by a calculation
of R2. The coefficient R2 for the model was 0.7 (Figure 3). The estimated
reliability of the model for the CC was ±0.3.

3.2.2 Fuzzy model of σF

The model for prediction of σF has one additional input with respect to the
model of CC. Identification of the model resulted in almost identical placement
of the two membership functions for the linguistic variables the median of the
particle size distribution and main compression force as in the case of CC.
The identified membership functions of the linguistic variable pre-compression
force are shown in Figure 4.

[Figure 4 about here.]

Similar to the fuzzy sets for the main compression force, the two fuzzy sets
were named high and low. The logical and the output statements are similar to
the statements of the CC model, except that there is one more input variable
which elevates the number of logical statements to eight, since we have three
input variables and each of them can be a member of the two sets. The output
statement is then composed of eight terms; one term for each logical statement.
The resulting relation for the σF identified with the fuzzy model is presented
in Figure 5.

[Figure 5 about here.]

The quality of the fuzzy identification process was assessed by a calculation
of R2. The coefficient R2 for the model was 0.7 (Figure 5). The estimated
reliability of the model for the σF prediction was ±10 N.

3.2.3 Fuzzy model of σm

Tableting speed (v) had to be added as an additional input with respect
to the model of σF . Identification of the model resulted in almost identical
membership functions for the linguistic variables: median of the particle size
distribution, main compression force, and pre-compression force as for models
of CC and σF . The identified membership functions of the linguistic variable
tableting speed are shown in Figure 6.

[Figure 6 about here.]

The two fuzzy sets of the variable tableting speed were named high and low.
The logical and the output statements are similar to the statements of the
CC model, except that there are two more input variables which elevates the
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number of logical statements to 16, since we have four input variables and
each of them can be a member of the two sets. The output statement is then
composed of 16 terms; one term for each logical statement. The resulting
relation for the σm identified with the fuzzy model is presented in Figure 7.

[Figure 7 about here.]

The quality of the fuzzy identification process was assessed by a calculation
of R2. The coefficient R2 for the model was 0.7 (Figure 7). The estimated
reliability of the model for the σm was ±0.005 g.

3.3 Optimisation

The optimisation was performed only for the Direct system, since both dry
granulation systems have resulted in already sufficient tablet quality for all the
selected machine settings. When optimising the tableting machine settings, the
mechanical properties of the powder are a-priori known, therefore, only a part
of the modelled surfaces (Figures 3, 5 and 7) at the value of mp that describes
the median of the particle size distribution of the actual powder is relevant.
The capping coefficient (CC) becomes a function of the main compression
force (Figure 8).

[Figure 8 about here.]

The standard deviation of crushing strength (σF ) becomes a function of the
main compression force (F ) and the pre-compression force (f) (Figure 9).

[Figure 9 about here.]

The standard deviation of tablet mass (σm) becomes a function of the main
compression force (F ), the pre-compression force (f), and the tableting speed
(v), however, since best economical effect is achieved at the top tableting
speed, only the relation at 100,000 tbl/h is relevant (Figure 10).

[Figure 10 about here.]

In Figures 8 to 10 the areas with optimal settings for the tableting machine for
the Direct system are located in two regions. The first-one is around F = 7 kN
and f = 5.5 kN, and the second-one is around F = 15 kN and f = 7 kN. In
both cases tableting speed is set to 100,000 tbl/h.
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4 Discussion

The most important issue during modelling is the model validation. The vali-
dation of models that were built exclusively on data (identification) is usually
done by testing the model’s predictive power. In our case a variant of the
leave-one-out procedure was used. Thus, for each identification-validation cy-
cle, 61 randomly chosen tablet types out of 76 were used for the identification,
while the model was validated on the remaining 15 tablet types. The model
validation is discussed in detail in (Belič et al., 2009).

The model indicated two areas of machine parameters settings that can lead
to optimal tablet quality. The procedure for optimal setting of the machine
with respect to the powder batch properties must continue by testing some
settings in the identified optimal areas on the tableting machine. The area
with low main and pre- compression forces may have some negative effects on
the absolute value of the crushing strength, therefore, the area with higher
values of the main and pre-compression forces should be tested first. The data
collected from the tests must be included to the training data set, since it
will add valuable information on the identified relation and the model will be
upgraded to produce more precise predictions. Thus, with every new powder
batch, the model will become more reliable.

Various information on process characteristics can be extracted from the model
as well. The identified membership functions (Figures 2, 4, 6) show that fuzzifi-
cation separates the median of the particle size distribution such that mixtures
with the values below 0.02 mm are considered as fine mixtures that might have
poor compressibility and flow characteristics, while the mixtures with the val-
ues above 0.05 mm are considered as coarse mixtures with relatively good
compressibility and flow characteristics. The main compression forces below
13 kN are considered as low forces, while forces above 18 kN are considered
as high forces. Therefore, it can be stated that the powder mixture, used
in the study, shows different compression characteristics under conditions of
low or high main compression forces, suggesting at least two different dom-
inant mechanisms of particle adhesion at compression. The pre-compression
force is considered to be low under 7.5 kN, while it is considered high above
8.8 kN, again suggesting at least two different dominant mechanisms at pre-
compression. The tableting speed is also divided into two regions: low, which
is below 50,000 tbl/h, and high, which is above 80,000 tbl/h. The results in
Figure 7 in combination with such division of the tableting speed space suggest
that flow characteristics of the powder and the tableting machine character-
istics may start causing problems with accurate dosing of the powder to the
tableting dye at high tableting speeds.
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5 Conclusion

Fuzzy models are not very often used in the field of pharmaceutical technology;
however, they have some significant advantages over other model types. Most
importantly, it is possible to use other knowledge than just the measured data
for their identification, which reduces the need for large quantities of data when
identifying non-linear relations. The fuzzy model can be built on the basis of
piece-wise linear models that are often used in pharmaceutical sciences. Thus,
we also obtain better model transparency, which is very important for the
understanding of complex non-linear relations.

The identified input-output relation is specific to the tableting machine, the
equipment used in the study, as well as the powder mixture and cannot be
generalised to all tableting machines of the same model or all powder mix-
tures. However, the presented procedure of model identification is generally
applicable to all tableting procedures and machines.

The model represents valuable information for the operator, about optimal
ranges of machine settings with respect to the physical properties of the pow-
der. Using the model is also more cost effective than a manual trial-and-error
approach. Optimisation of the tableting machine’s settings by trial and error
produces a relatively large number of faulty tablets and is very time consum-
ing, especially when the starting settings of the machine were poorly guessed;
furthermore, the procedure has to be repeated for each new powder batch.
In an industrial environment with a PAT system implemented the develop-
ment of the model would have to be divided into two stages. First, the data
generation for building the model would be organised as a dedicated exper-
iment that should cover the area of interest described by machine’s setting
parameters and the significant properties of the powder. For the modelling,
the machine’s settings must be systematically chosen to cover the whole area
of interesting values and tested for several batches. Next, the model would be
validated and further developed with data from large-scale production. Pro-
duction monitoring data typically contributes relatively dense data sets from
the near-optimal areas of the experimental space that were not included in the
experimental plan at the beginning. The experiments for modelling purposes
are more expensive than the ones for the optimisation with trial-and-error;
however, the model can be used for the prediction of optimal settings for new
batches, which substantially shortens the time for optimising the machine set-
tings with respect to a new batch and reduces the number of faulty tablets.
The model, developed in the present study is suitable for implementation into
the PAT concept and can become an important part of a QbD approach.
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Figure 1. Boxplot of the particle size distributions for the mixtures used in the study.
The middle line in the box represents the median, the box represents the upper and
the lower quartile of the particle size distribution, and the whiskers represent the
total data extent.
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particle size distribution (mp), b) the main compression force (F )
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of the particle size distribution (mp) and the capping coefficient (CC). The cir-
cles represent the measurements; the surface represents the prediction of the fuzzy
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Figure 5. Standard deviation of crushing strength (σF ) with respect to the median
of the particle size distribution (mp), the main compression force (F ), and the
pre-compression force (f)
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Figure 7. Standard deviation of mass σm with respect to the median of the particle
size distribution (mp), the main compression force (F ), the pre-compression force
(f), and the tableting speed (v). Only the settings that were experimentally tested
are shown.
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Circles indicate settings that yield optimal-quality tablets.
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Table 1
Process parameters for dry granulation on a rotary tablet press (Slugging) and on
a roller compactor (Roller)

Slugging Roller

label speed compression label speed compression

(x1000 tbl/h) force (x1000 tbl/h) force

(kN) (kN)

S26/21 26 21 R12/60 12 60

S100/21 100 21 R20/60 20 60

S26/14 26 14 S16/85 16 85

S100/14 100 14 S20/85 20 85
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Table 2
Combinations of the process parameters settings

Process Main compression Pre-compression Tableting speed

parameters force force (x 1000 tbl/h)

combination (kN) (kN)

1. 21 5 26

2. 21 9 26

3. 14 9 26

4. 14 5 26

5. 18 7.5 40

6. 14 7.5 40

7. 14 9 67.5

8. 14 9 100

9. 21 5 100

10. 21 9 100

11. 7 5 100

12. 7 5 26
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